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The evolution equation governing wavemaker-generated cross-waves near a cutoff 
frequency in an infinitely deep, infinitely long channel is shown to be the nonlinear 
Schrodinger equation with a homogeneous boundary condition at the wavemaker. 
With the inclusion of an empirically determined damping coefficient, numerical 
results for growth rate, slow modulation period, and wave amplitude show good 
agreement with previous experiments. The results also describe observations of 
trapped and propagating solutions. 

1. Introduction 
Cross-waves have been studied for over one hundred years, and Garrett’s (1970) 

paper contains a review of the early literature. However, it is still baffling to see a 
wave tank in which cross-waves appear at one-half the forcing frequency, with their 
crests at right angles to the wavemaker. This puzzling observation, in fact, hints 
at the difficulty in reconciling, mathematically, the wavemaker boundary condition 
with the cross-wave field. Many experimental results (Barnard & Pritchard 1972) still 
have scant theoretical support, and recent observations of trapped and chaotic 
solutions in closely allied phenomena (Wu, Keolian & Rudnick 1984; Ciliberto & 
Gollub 1985) further stimulate interest in the nonlinear character of cross-waves. 

Cross-waves are generated in a channel by a symmetric wavemaker (i.e. one for 
which the wavemaker displacement is constant across the channel at any given 
depth). A similar instability is Faraday resonance in a trough (Miles 1984; Wu et al. 
1984). In  both phenomena, there is a nonlinear parametric resonance in the 
neighbourhood of the cutoff frequencies (i.e. the natural frequencies based on channel 
width). 

Barnard, Mahony & Pritchard (1977) and Jones (1984) update Garrett’s review. 
Barnard et al. investigated steady-state waves generated by a (antisymmetric) plane 
paddle oscillating about a vertical shaft. In this case, the waves are forced directly 
at the fundamental frequency. Aranha, Yue & Mei (1982) made a numerical study 
of the nonlinear Schrodinger equation describing time-dependent inviscid acoustic 
modes in a duct. The response is once again forced directly, as is evident by the 
inhomogeneous wavemaker boundary condition (cf. Aranha et al., equation 2.31 b). 

For a symmetric wavemaker in a channel, Jones found an implicit boundary 
condition, implying that, as an initial-value problem, the parametrically excited 
cross-waves will develop from the forced quiescent state only if initially perturbed. 
He found good agreement between his linearized equations and measurements by 
Barnard & Pritchard (1972) near the stability margin. Miles (1985) found a hyperbolic 
secant solution which describes a trapped soliton solution to Jones’s equations. 

This paper is concerned with the slow modulation (in both space and time) of 
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parametrically excited cross-waves in a channel in the presence of damping. We differ 
from Jones (1984) and the earlier work of Mahony (1972) in that our interest is 
cross-waves near saturation for which the cross-wave amplitude is considerably larger 
than the wavemaker amplitude. A t  these large amplitudes, i t  was found necessary 
to rescale the equations derived by Jones with a factor which depends on wavemaker 
shape. The governing equation for the complex amplitude A is the cubic nonlinear 
Schrodinger equation 

iA,+ A,, + AA + IAI2A = 0, 

with the wavemaker boundary condition 

A, = iA* at  X = 0, 

where A is the detuning parameter. 
For quantitative comparison with data, it is necessary to augment the inviscid 

equation with an empirically derived damping coefficient. Numerical results are 
presented which are in good agreement with the growth rate, slow modulation period, 
spatial structure, and amplitude measurements of Barnard & Pritchard. The 
numerical results also reveal propagating modes, first observed experimentally by 
Barnard & Pritchard, and trapped solutions. The inviscid trapped solution found by 
Miles (1985) is shown to fall outside the region of linear instability. The numerical 
viscous trapped solutions, however, do occur inside the linear instability region. 

2. Formulation 
Variables are non-dimensionalized through the use of length I and time (Z/g)i, where 

g is the gravitational acceleration. The channel is considered infinitely deep with the 
origin at the undisturbed free surface and z positive upwards. Rigid walls are a t  y = 0 
and nx/a, where a = nxl/b,  b is the dimensional width, and n, the transverse mode 
number, is easily visualized as equal to twice the number of wavelengths spanning 
the y-direction. The mean location of the wavemaker is at 2 = 0, and the channel 
extends to x -+ 00. 

The velocity field ii = V@ is assumed inviscid, incompressible and irrotational, 
where @(x, y, z, t )  is the velocity potential. The governing equation is 

V2@ = 0. (1) 

az = ct+@zcz+@ycy on2 = C ( z , y , t ) ,  (2) 

The free-surface boundary conditions are 

@t+c+i(@z+@i+@i) = 0 on z = [(x, y,t) ,  (3) 

where surface tension is neglected. The normal velocity vanishes at the sidewalls : 

nx 
@ , = O  ony=O,-  

a 

and the velocity potential vanishes at  great depth : 

@ = O  onz+-m 

(4) 

The wavemaker oscillates with frequency w and amplitude E 4 1 about x = 0 
according to 

x = sF(z) sinwt. 
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For a plane flap hinged at z = -d, 

I 0  z < - d .  

On the wavemaker, the kinematic boundary condition is 

Qjz = E -+ Qrz- [F(z)  sinot] on 2 = sF(z) sinwt. 
(:t 2 

Equations (1)-(6), together with a radiation boundary condition as x+ a, constitute 
the problem statement. 

The multiple-scale perturbation method is used to look for a weakly nonlinear 
solution for which the complex amplitude A of the cross-wave velocity potential is 
a function of a large spatial scale X and a slow time 7,  

$ = ea-t[A(X, 7 )  e-Qt + *] eaz cos ay,  

where the subharmonic cutoff frequency y = a+, and * denotes the complex conjugate. 
Using the scalings 

one can follow Jones's (1984) analysis to obtain the slow modulation equation (see 
also Miles 1985) 

x = €ax, 7 = €2yt, (7% b) 

iA,+iAxx+AA+$4I2A = 0, ( 8 4  

A, = iRA* at X = 0, (8b) 

where 
4 2 y -  1 

A =  -0.202G2, 
€2 

0 

G = 4a2 F(s)  e4a8 ds, I, 
( 9 4  

The definition of A in (9a) is slightly different from Jones (1984) because of 
straining the t-coordinate instead of the y-coordinate. While Jones's original scaling 
is well suited to his analysis of the initial growth of cross-waves, from Barnard & 
Pritchard's (1972) experimental results for n = 2 and from Lichter t Shemer (1986), 
we find R = O(s-i). For these cases then, the original scaling leads to IAI being 
greater than O(1); this indicates the need to rescale the equations. We set 

X = RX, .i = iR2r, 

Omitting the circumflex, (8) can now be written as 

iA,+A,,+AA+lA12A = 0, 

A, = iA* at X = 0. 

The introduction of R as a rescaling parameter implies that the ultimate scaling 
is formulated upon eR. This composite scaling parameter is independent of the 
lengthscale 1. The necessity to rescale can be understood heuristically as follows. 



454 S. Lichter and J. Chen 

The amplitude of the harmonic progressing wave is proportional to an integral of 
the wavemaker shape times a decaying exponential in depth, see Havelock (1929) or 
Jones’s (1984) equation (3c); so only that portion of the wavemaker near the surface 
is relevant to progressing-wave growth. However, the cross-wave amplitude, through 
R, depends on a term that is an integral of the wavemaker shape F(z )  ; a wavemaker 
of considerable depth, then, can result in large-amplitude cross-waves and small 
progressing waves, see also Garrett (1970). 

3. Viscous damping 
As noted by Barnard et al. (1977) in the case of antisymmetric forcing, the inviscid 

formulation must be augmented by a damping term before quantitative comparison 
with measurements (see also Miles 1984). Barnard et al. derived an expression for the 
damping at the walls of the channel and then evaluated the coefficients empirically. 
Applying their matched asymptotic expansion procedure to the present case yields 
the result, identical with theirs, that the real coefficient A in the inviscid equation 
(10a) is replaced by 

A +A + iL, 

where h is the observed frequency detuning and L is an empirical damping coefficient. 
The empirical A will then incorporate the viscous correction as well as the interaction 
G from the progressing wave, though this last contribution is small (Jones 1984). The 
coefficient L can be determined from Barnard & Pritchard’s (1972) measurements of 
the linear growth rate at the stability margin. Using the solution to the linearized 
equation (10)andBarnardt Pritchard’sfigure2(a), wefind0.0114 < (ER)~L < 0.0312 
for wavemaker amplitudes 0.0065 < 8 < 0.0128. From linear analysis (Barnard et al. 
1977; Miles 1984), ( E R ) ~ L  is expected to be constant for all cases a t  n = 2. So, for 
comparison with the experiments, we chose ( c R ) ~ L  = 0.0154. 

Augmented by the damping term, all solutions are damped for sufficiently large 
X, and we can finally write the boundary condition a t  infinity as 

A = O  onX-too. (11) 

4. Numerical approach 
Equation (10) is solved numerically by a semi-implicit (Crank-Nicolson) finite- 

difference scheme similar to the one used by Aranha et al. (1982) : 

where A, = A ( X ,   AT), a,, is the second-order central-difference operator in the 
X-direction, and 

A,+, = A , - ~ A T [ ~ ~ , , A , + ( A + ~ L ) A , + I A , ~ ~ A , ]  1 

A sufficiently large domain for X was used to ensure that, for the times presented, 
the outer boundary effects were negligible. Due to the complex-conjugate term 
appearing in the boundary condition, a tridiagonal solver cannot be used here. 
However, dividing A into real and imaginary parts, the discretized system of (12) 
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associated with the boundary conditions is still a banded matrix. As the waves are 
driven by an implicit homogeneous boundary condition, a non-zero initial condition 
is necessary to excite the cross-waves. To satisfy the boundary conditions at X = 0 
and X+ 00, the initial condition for the scheme is chosen as 

A ( X ,  0) = a,(l -i) e-X, (13) 

where a, is a real constant for which we chose a, = 0.01 for all cases presented. In  
earlier runs, using a, as small &g 0.0001 gives no discernible difference compared with 

Equation (12) is consistent, and the truncation error of the scheme is second order 
in time and space. It is easy to prove that iterations on the nonlinear term in (12a) 
are not necessary to improve the accuracy of the scheme. Equation (12) was stable 
for all of our runs. 

The determination of computational step sizes was based on experience with the 
code testing and the variation of numerical results for different AT and AX. All of 
the viscous calculations were done with AT = 0.025 and AX = 0.05. For the inviscid 
case, which was more sensitive, AT = 0.01 for 7 < 5, AT = 0.0025 for T > 5, and 
AX = 0.05. 

For L > 0, a solution to the linearized equation (10) was used for the code testing. 
For the nonlinear equation with L = 0, the scheme was tested against a known 
solitary-wave solution of (1Oa) with an implicit homogeneous boundary condition at 
x = 0. 

a, = 0.01. 

5. Results 
5.1. Inviscid results 

As noted in $3, viscous effects must be taken into account to allow quantitative 
comparison with measurements. However, the qualitative features of the experi- 
mental results are already present in the inviscid results. From figure 1, linear growth 
followed by a nonlinear rise to finite amplitude is evident. In general, the final state 
appears not to be of constant amplitude. As can be seen from the space-time evolution 
in figure 2, variations in amplitude are accompanied by disturbances which propagate 
away from the wavemaker. 

5.2. V i s m  results 
To show the scope and limitations of the analysis, our numerical calculations are 
compared with Barnard & Pritchard’s (1972) experiments for mode n = 2, for which 
the observed cutoff frequency was x/0.22202 s-l. These experiments were carried out 
in a rectangular channel, 30.6 cm wide and 270 cm long, with water 16.4 cm deep. 
The wavemaker was a plane flap, hinged at the base, at one end of the wavetank. 
An absorbing beach was at the opposing end of the tank. 

For these experiments, to recover dimensional quantities, slow time T is multiplied 
by (b/n7~9)4(2/&)~ and X by b/(nmR). To facilitate comparison with the experimental 
results, we adopt Barnard & Pritchard’s (1972) notation for the wavemaker angular 
displacement 8. Also, as noted in $3, linear analysis implies that 02L is constant. So, 
for Barnard & Pritchard’s forcing frequency, w = 2x/0.22198 s-l, & can be replaced 

Table 1 compares the calculated and observed nonlinear growth rate and the decay 
rate for the four wavemaker amplitudes given by Barnard &, Pritchard (1972), plus 
a larger fifth value, 8 = 0.0120. The agreement is generally good. For the nonlinear 

by 16.658, eeL = 5.695 x 10-5 ,  and A = 2.666 x i o - 6 p .  
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FIGURE 1. IA(O,T)~ for the inviscid case with h = 0. 

M 

FIGURE 2. Space-time evolution of IA(X, T)[ for the inviscid case of figure 1 .  The vertical scale is 
proportional to IAl. 

growth rate, the agreement is only fair owing to the sensitive dependence of the 
growth and decay rates on w and L. At B = 0.0112, for example, a 0.1 % change in 
w or a 1 % uncertainty in L results in a 5 yo change in the nonlinear growth rate. The 
tabulated predicted decay rate is the maximum value. 

Figure 3 shows IA(0,7)1 for the wavemaker amplitudes of table 1, and the 
corresponding phases are shown in figure 4. (The case 6 = 0.0092 is omitted as it is 
similar in appearance to 6' = 0.0089.) For the smaller forcing amplitudes, A ( X ,  7 )  
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Wavemaker amplitude, 8 (rad) 

Growth rate beyond the initial 
development (s-l) 

1 2 3 4 5 

0.0089 0.0092 0.0099 0.0112 0.0120 

0.028 0.033 0.049 0.073 0.120 
(0.056) (0.059) (0.071) (0.112) 

Decay rate during the modulation (0) 0.027 0.038 0.072 0.150 0.274 
(0.043) (0.047) (0.063) (0.136) 

72 29 Modulation period ( 8 )  - - - 

(69) 

TABLE 1. Comparison of the numerical results with the experiments (in parentheses) of 
Barnard & Pritchard (1972) 

2.0 

1.5 

I&O, 711 
1 .o 

0.5 

0 
2.0 

1.5 
I&O, d1 

1 .o 

0.5 

0 20 40 60 80 0 20 40 60 80 
7 7 

FIGURE 3. IA(O,7)1 for (a) 8 = 0.0089; (b )  0.0099; (c) 0.0112; (d )  0.0120. 

approaches a steady state (see also figure 5a). For B = 0.0112 and 0.0120, the 
long-time behaviour of IA(0, T ) ]  is slowly modulated and the phase varies from -n 
to n. From the phase results, it is apparent that at these higher forcing amplitudes, 
disturbances are propagating away from the wavemaker. In fact, ‘the cross-waves 
never reach a true state of equilibrium, [and] after the cross-wave amplitude has 
passed through a maximum, a wave detaches itself from the wavemaker, propagates 
along the channel’ and eventually decays (Barnard & Pritchard 1972, p. 254). This 
quotation from their experimental observations is also fitting for the numerical 
results, as is borne out by the spacetime evolution, figure 5. 

Ths predicted IA(O,7)1 for B = 0.0112 can be compared to Barnard & Pritchard’s 
(1972) measurements (their figure 5 )  of the slow-time modulation. The observed 
period of the slow modulation is approximately 69 s and the maximum amplitude 
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FIQURE 4. Phase of A ( ~ , T )  for (a)  8 = 0.0089; (b)  0.0099; (c )  0.0112; (d )  0.0120. 

is reported to be 2.75 cm.t The predicted period of 72 s is close to the measured period. 
The predicted maximum amplitude at  the wavemaker, 1.9 cm, is comparable with 
the measurement. 

Bernard & Pritchard (1972, p. 254) also observed that ‘it is clear to the eye that 
the larger the value of 8, the smaller is the extent of the wave along the channel’. 
The numerical results, figure 6, similarly show the narrow profile of the wave at  the 
larger forcing amplitudes; when dimensional units are restored, the effect is even more 
obvious . 

In their study of the time-independent nonlinear Schrodinger equation describing 
waves forced by an antisymmetric wavemaker, Barnard et al. (1977) showed that the 
phase varied linearly along the channel in the inviscid approximation. It is interesting 
to note in the present study, figure 7, that, even when time dependence is present, 
the variation of phase along the channel is very nearly linear, especially at small 
wavemaker amplitudes. 

There is some interest in trapped solutions for which there is no radiation away 
from the vicinity of the wavemaker. Trapped solutions have been found experi- 
mentally by Wu et al. (1984) for Faraday resonance in a vertically oscillated trough. 
Miles (1985) has found a trapped solution for inviscid cross-waves which is independent 
of the slow time 7 .  His condition for trapping is (in our notation) --A > 1. However, 
the inviscid linear stability margin is given by I-Al = 1, and this means that the inviscid 
trapped solution found by Miles is, at best, neutrally stable. 

Furthermore, as pointed out by Miles (1985), in the absence of the wavemaker (i.e. 
R = 0), the trapping condition implies that the wavemaker operates below the cutoff 

t Though not reported in their original paper, the amplitude measurement was made at 20.8 cm 
from the wavemaker (W. G.  Pritchard, private communication). 
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FIQURE 5. Spacetime evolution for (a) 0 = 0.0089; ( b )  0.0112; (c) 0.0120. The vertical scale is 
proportional to IAl. 
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d 

FIQURE 6. IA(X, T ) I  at T = 80. 

frequency. While this condition is consistent with Aranha et aZ.’s (1982) inviscid 
numerical results, the dissipative results give a more complicated picture. Figures 
3 (a, 13) and 4 (a, b) show steady trapped solutions in the long-time limit at small forcing 
amplitudes. Note that the phase varies along the channel, figure 7 (a), instead of being 
constant as indicated by the solution given by Miles. If the forcing amplitude 8 
is now fixed and the detuning is varied, a steady trapped solution is found for 
frequencies above the cutoff, h > 0, figures 8(a )  and 9(a). For h < 0, figures 8 ( b )  
and 9(b) ,  a time-dependent trapped solution is found for which, during each slow 
modulation period, the location of maximum amplitude propagates away from the 
wavemaker and then, rather than radiating to X + m ,  returns to the wavemaker 
location, X = 0. 

The occurrence of a trapped or a propagating solution has a profound effect on the 
appearance of the far field. Figure 10 shows the wave field C at T = 80. Once again, 
parameters are chosen to correspond to Barnard & Pritchard’s (1972) wave tank. For 
the trapped solution a t  small forcing amplitudes, the crest of the non-propagating 
cross-wave extends from X = 0 well into the wave field. For larger forcing amplitudes, 
the disturbances which have propagated away from the wavemaker form a staggered 
arrangement of crests and troughs in the far field. 

6. Discussion 
Comparison of the linear theory with experiment for the initial linear growth and 

the margin of stability has been discussed in detail by Jones (1984) for the case n = 2. 
He finds very good agreement.? Our main concern is with the nonlinear results for 
which no previous comparison with data has appeared. In  fact, Jones notes that 
‘there is no likelihood of the [nonlinear] results agreeing with experiment’ (p. 73). 
He did not need to be so pessimistic as his analytic method, once rescaled and with 
a consideration of damping, yields equations that agree with experiments. However, 
this agreement is made clear only from the numerical results, and here one cannot, 

t In Jones’s equations (41) and (42), the ‘+’ sign preceding the detuning term should be ‘-’. 
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FIGURE 7. Phase of A(& 80) for (a) 8 = 0.0089; ( b )  0.0112; (c) 0.0120. 
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FIQURE 8. The influence of the detuning A on IA(O,T)~ at  constant forcing amplitude, 
0 = 0.0112, for (a) A = 0.5; (b)  -0.5. 

as in Jones, limit the results to the case A = 0. More seriously, the computations are 
rather sensitive to the end condition, and the choice of X = 1 as the downstream limit 
in Jones’s inviscid model is prone to yield spurious results. 

In summary, the present work favourably describes the experimental results for 
linear and nonlinear growth rates, slow modulation period, cross-wave amplitude, 
and trapped and propagating behaviour. The exponential growth predicted by the 
linearized equation is curtailed by nonlinearity with no necessity for dissipation. The 
numerical results indicate that the conditions for which trapped solutions occur are 
quite different from those indicated by the inviscid analysis. Also, at  higher forcing 
amplitudes, it  is found that cross-waves propagate away from the wavemaker to form 
a staggered arrangement of crests in the far field. It is interesting to note that the 
variation of crest arrangement to the staggered pattern which occurs by increasing 
the wavemaker amplitude was often observed in our wave tank, which has a geometry 
similar to the one used by Barnard & Pritchard (1972) but operates at a higher 
angular frequency, Q x 31 s-l. 
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- A  
0 20 40 60 

7 

F’IGURE 9. The inthence of the detuning h on the phase of A(0,7) at constant forcing amplitude, 
8 = 0.0112, for (a) h = 0.5; (a) -0.5. 

Comparison with experiment reveals, as well, the limitations of the perturbation 
equations. The model relies on an empirical damping coefficient which is found to 
depend on wave amplitude. Analytical expressions (as opposed to the empirical fit) 
for linear dissipation (Barnard et al. 1977; Miles 1984) also need further refinement 
as they yield damping coefficients that are, in general, too small. We are presently 
investigating dissipative effects, including the effect of dissipation at the wavemaker. 
Additionally, at large forcing amplitudes, the cross-wave profile in the X-direction 
is observed to be more variegated than the numerical model allows. Experiments at 
wavelengths of approximately 5cm reveal profiles that are more step-like than 
smoothly decaying in the X-direction. Finally, at extremely large forcing amplitudes, 
the weakly nonlinear assumption may not be suitable. 
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FIQURE 10. A numerical snapshot of the wave field at T = 80 for (a) 0 = 0.0089; ( b )  0.0112; 
(c) 0.0120. The vertical scale is proportional to 5. 
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